服务热线
021-51099719
在现代化停车场管理中,涉及到各方面的管理,其中车辆的管理是一个重要的方面。尤其是对特殊停车场、大院及政府机关、小区而言,要求对各种车辆实时地进行严格的管理,对其出入的时间进行严格的监视,并对各类车辆进行登记(包括内部车辆和外部车辆)和识别。对大规模的场区中,各种出入的车辆较多,如每辆车都要进行人工判断,既费时,又不利于管理和查询,保卫工作比较困难,效率低下。为了改善这种与现代化停车场、大院及政府机关、小区等不相称的管理模式,需要尽快实现车辆管理工作的自动化、智能化,并以计算机网络的形式进行管理,对所有出入口的车辆进行有效地、准确地监测和管理。要求系统提供相应的应用软件,实现营区管理的高效率、智能化。
系统自动识别进入小区车辆的号码和车牌特征,验证用户的合法身份,自动比对黑名单库,自动报警,并可对整个停车场情况进行监控和管理,包括出入口管理,内部管理,采集,存储数据和系统工作状态,以便管理员进行监控,维护,统计,查询和打印报表等工作。车辆出入小区,完全处于系统监控之下,使小区的出入,收费,防盗,车位管理完全智能化、自动化并具有方便快捷,安全可靠的优点.
其主要特点如下:
识别系统对环境的依赖性降低至最低程度,可实现全天候正常工作,且识别率保持较高水平。
基于LPR识别系统提高了识别的速度和准确性。
可识别的最小号牌宽度为80个像素
适应复杂的气候及光照条件,如阴天、雨天、晚上仍可保证高识别率。
适应高速大流量,车速在20 km/h,单车道流量为30辆/分钟时仍可保证高识别率(>98%)。
实现对视频图像的逐帧处理,视频流触发,不用埋设地感线圈(双通道),避免破坏路面。
工程安装简便、运行稳定,不干扰用户已有系。
具有极高的处理能力,对车辆行进过程中所有图像都进行识别和处理,不依赖于单张图片,有效提高设备对复杂环境的适应能力
1.1、对不同光照的适应能力
在工程现场环境比较复杂,例如:烟雾、雨雪、日光不同角度的照射、车灯以及大型广告牌等都有可能对识别系统造成干扰,特别是采用外触发方式的识别设备,其识别率严重依赖于所抓拍的图片,当抓拍的瞬间,车辆牌照处在受干扰位置,会造成误识别。
我公司的车牌识别算法对视频图像进行逐帧实时处理,车辆在运动过程中,角度、光照是不断变化的,总会在某些时刻车牌是清晰的,一定会采集到一些车牌清晰的视频帧用于分析和识别,因此我公司的车牌识别设备对光线、气候的抗干扰能力极强
1.2、对闯关车辆和超低速行驶车辆的适应能力
由于采用高速算法平台,适应时速20公里/小时的车速,使得车辆在超高速(闯关冲卡车辆)行驶或超低速行驶时都能准确识别车牌号码抓拍图片,避免了因高速车辆通行路口无法捕获的现象发生。
一、识别流程
车牌自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。
其硬件基础一般包括触发设备(监测车辆是否进入视野)、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机(如计算机)等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。
某些车牌识别系统还具有通过视频图像判断是否有车的功能称之为视频车辆检测。
一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分。
当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。车牌识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。
二、车辆检测
车辆检测可以采用埋地线圈检测、红外检测、雷达检测技术、视频检测等多种方式。
采用视频检测可以避免破坏路面、不必附加外部检测设备、不需矫正触发位置、节省开支,而且更适合移动式、便携式应用的要求。
系统进行视频车辆检测,需要具备很高的处理速度并采用优秀的算法,在基本不丢帧的情况下实现图像采集、处理。
若处理速度慢,则导致丢帧,使系统无法检测到行驶速度较快的车辆,同时也难以保证在有利于识别的位置开始识别处理,影响系统识别率。因此,将视频车辆检测与牌照自动识别相结合具备一定的技术难度。
武汉车牌识别
三、号码识别
为了进行车牌识别,需要以下几个基本的步骤:
1、牌照定位,定位图片中的牌照位置;
2、牌照字符分割,把牌照中的字符分割出来;
3、牌照字符识别,把分割好的字符进行识别,*终组成牌照号码。
车牌识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。
3.1牌照定位
自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。
首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,*选定一个*的区域作为牌照区域,并将其从图像中分离出来。
3.2牌照字符分割
完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。
由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部*小值的附近,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一些其他条件。
利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。
3.1牌照字符识别方法
主要有基于模板匹配算法和基于人工神经网络算法。
基于模板匹配算法首先将分割后的字符二值化并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,选择*匹配作为结果。
基于人工神经网络的算法有两种:一种是先对字符进行特征提取,然后用所获得特征来训练神经网络分配器;
另一种方法是直接把图像输入网络,由网络自动实现特征提取直至识别出结果。
实际应用中,车牌识别系统的识别率还与牌照质量和拍摄质量密切相关。
牌照质量会受到各种因素的影响,如生锈、污损、油漆剥落、字体褪色、牌照被遮挡、牌照倾斜、高亮反光、多牌照、假牌照等等;
实际拍摄过程也会受到环境亮度、拍摄方式、车辆速度等等因素的影响。
这些影响因素不同程度上降低了车牌识别的识别率,也正是车牌识别系统的困难和挑战所在。
为了提高识别率,除了不断地完善识别算法还应该想办法克服各种光照条件,使采集到的图像利于识别。